TOP(サイトマップ) Solaris man マニュアル
(はじめに)
はじめに
Solarisって・・・
SunのセミナーとSDC
Solaris 10概要
資格(SCSA,SCNA)
Solarisフォーラム
管理人に連絡

(Solaris基本)

Solarisのインストール
システムの起動と停止
ファイルシステム
オートマウントとマウント
パッケージとパッチ
ユーザの追加と削除
ファイル権限(セキュリティ)
バックアップとリストア
CDE環境
プロセス管理/監視

(ネットワーク管理)

OSIを理解してみる
TCP/IPの設定
(TCP/IP入門)
DNSの設定
NISの設定
NFSの設定(WebNFS,CacheFS)
(NIS、NIS+、DNS違い)
DHCPの設定
1つのNICで複数IP設定

(IO関連)

インタフェース概要
SAFの管理
プリンタ管理概要
プリンタコマンド
SunSolve Online
SCSI情報(KEY,ASC,ASCQ)

(ソフトウェア関連)

Bash
Apache
Solstice DiskSuite
(SDS OSミラー回復)
Veritas VxVM

(OBPについて)

PROM(OBP)の概要
OBPでのキーボード操作
一般的なOBPコマンド
SolarisでOBPの設定
OBPに関するFAQ


(トラブル時の対応)

基本情報
エラーメッセージ
(主要メッセージ一覧)
性能関連コマンド
トレースコマンド
クラッシュダンプ
SunSolve Online

(その他)

小技集
UNIXコマンド
(manマニュアル)
システムチューニング
ネットワークチューニング
UltraSPARC T1について

(FAQ)

rootのPASSが不明
ハングアップかな?
ハードトラブル
OSが起動しない(b)
swap領域の拡張方法

(リンク)

Sun関連リンク
その他リンク
アバウトなJava入門
Perlメモ(逆引き用)

System Administration Commands                       lockstat(1M)

NAME
     lockstat - report kernel lock and profiling statistics

SYNOPSIS
     lockstat [-ACEHI] [ -e event_list] [-i rate] [-b | -t | -h |
     -s depth]  [-n nrecords] [ -l lock [ , size]] [-d  duration]
     [ -f function [ ,  size]]  [-T]  [-ckgwWRpP]  [-D count]  [-
     o filename] command [args]

DESCRIPTION
     The lockstat utility gathers and displays kernel locking and
     profiling  statistics.  lockstat allows you to specify which
     events to watch (for example, ``spin  on  adaptive  mutex,''
     ``block  on  read access to rwlock due to waiting writers,''
     and so forth) how much data to gather for  each  event,  and
     how  to  display the data. By default, lockstat monitors all
     lock contention events, gathers frequency  and  timing  data
     about those events, and displays the data in decreasing fre-
     quency order, so that the most common events appear first.

     lockstat gathers data until the specified command completes.
     For example, to gather statistics for a fixed-time interval,
     use sleep(1) as the command, as follows:

          example# lockstat sleep 5


     When the -I option  is  specified,  lockstat  establishes  a
     per-processor high-level periodic interrupt source to gather
     profiling data. The interrupt  handler  simply  generates  a
     lockstat  event whose ``caller'' is the interrupted PC (pro-
     gram counter). The profiling event is just  like  any  other
     lockstat  event,  so  all of the normal lockstat options are
     applicable.

     lockstat relies on DTrace to  modify  the  running  kernel's
     text  to  intercept events of interest. This imposes a small
     but measurable overhead on all system activity, so access to
     lockstat  is restricted to super-user by default. The system
     administrator can permit other  users  to  use  lockstat  by
     granting  them  additional  DTrace  privileges. Refer to the
     Solaris Dynamic Tracing Guide  for  more  information  about
     DTrace security features.

OPTIONS
     The following options are supported:

  Event Selection
     If no event selection options are specified, the default  is
     -C.



     -A              Watch all lock events. -A is  equivalent  to
                     -CH.



     -C              Watch contention events.



     -E              Watch error events.



     -e event_list   Only watch the specified events. event  list
                     is  a  comma-separated  list  of  events  or
                     ranges of events such as 1,4-7,35. Run lock-
                     stat  with  no  arguments  to  get  a  brief
                     description of all events.



     -H              Watch hold events.



     -I              Watch profiling interrupt events.



     -i rate         Interrupt rate  (per  second)  for  -I.  The
                     default  is 97 Hz, so that profiling doesn't
                     run in lockstep  with  the  clock  interrupt
                     (which runs at 100 Hz).



  Data Gathering (Mutually Exclusive)
     -b              Basic statistics: lock,  caller,  number  of
                     events.



     -h              Histogram:  Timing  plus   time-distribution
                     histograms.



     -s depth        Stack trace: Histogram plus stack traces  up
                     to depth frames deep.



     -t              Timing: Basic plus  timing  for  all  events
                     [default].



  Data Filtering
     -d duration     Only watch events longer than duration.



     -f func[,size]  Only watch events generated by  func,  which
                     can  be  specified as a symbolic name or hex
                     address. size defaults  to  the  ELF  symbol
                     size if available, or 1 if not.



     -l lock[,size]  Only watch lock, which can be specified as a
                     symbolic  name or hex address. size defaults
                     to the ELF symbol size or 1  if  the  symbol
                     size is not available.



     -n nrecords     Maximum number of data records.



     -T              Trace (rather than sample)  events  [off  by
                     default].



  Data Reporting
     -c              Coalesce lock  data  for  lock  arrays  (for
                     example, pse_mutex[]).



     -D count        Only display the top count  events  of  each
                     type.



     -g              Show total events generated by function. For
                     example, if foo() calls bar() in a loop, the
                     work done by bar() counts as work  generated
                     by  foo() (along with any work done by foo()
                     itself). The -g option works by counting the
                     total  number  of stack frames in which each
                     function appears. This implies  two  things:
                     (1)   the   data   reported  by  -g  can  be
                     misleading if the stack traces are not  deep
                     enough,  and  (2)  functions that are called
                     recursively might  show  greater  than  100%
                     activity. In light of issue (1), the default
                     data gathering mode when using -g is -s 50.



     -k              Coalesce PCs within functions.



     -o filename     Direct output to filename.



     -P              Sort data by (count * time) product.



     -p              Parsable output format.



     -R              Display rates  (events  per  second)  rather
                     than counts.



     -W              Whichever:  distinguish   events   only   by
                     caller, not by lock.



     -w              Wherever: distinguish events only  by  lock,
                     not by caller.



DISPLAY FORMATS
     The following headers appear over various columns of data.

     Count or ops/s          Number of times this event occurred,
                             or the rate (times per second) if -R
                             was specified.



     indv                    Percentage of all events represented
                             by this individual event.



     genr                    Percentage of all  events  generated
                             by this function.



     cuml                    Cumulative  percentage;  a   running
                             total of the individuals.



     rcnt                    Average reference count.  This  will
                             always  be  1  for  exclusive  locks
                             (mutexes, spin locks,  rwlocks  held
                             as writer) but can be greater than 1
                             for shared locks  (rwlocks  held  as
                             reader).



     spin or nsec            Average number of times caller  spun
                             trying  to  get the lock, or average
                             duration   of    the    events    in
                             nanoseconds,  as appropriate for the
                             event.  For  the  profiling   event,
                             ``duration''     means     interrupt
                             latency.



     Lock                    Address of the lock; displayed  sym-
                             bolically if possible.



     CPU+PIL                 CPU plus processor  interrupt  level
                             (PIL).  For  example,  if  CPU  4 is
                             interrupted while  at  PIL  6,  this
                             will be reported as cpu[4]+6.



     Caller                  Address  of  the  caller;  displayed
                             symbolically if possible.



EXAMPLES
     Example 1: Measuring Kernel Lock Contention

     example# lockstat sleep 5
     Adaptive mutex spin: 2210 events in 5.055 seconds (437 events/sec)

     Count indv cuml rcnt     spin Lock                Caller
     ------------------------------------------------------------------------
       269  12%  12% 1.00       10 service_queue       background+0xdc
       249  11%  23% 1.00        8 service_queue       qenable_locked+0x64
       228  10%  34% 1.00       13 service_queue       background+0x15c
        68   3%  37% 1.00        7 0x30000024070       untimeout+0x1c
        59   3%  40% 1.00       38 0x300066fa8e0       background+0xb0
        43   2%  41% 1.00        3 rqcred_lock         svc_getreq+0x3c
        42   2%  43% 1.00       34 0x30006834eb8       background+0xb0
        41   2%  45% 1.00       13 0x30000021058       untimeout+0x1c
        40   2%  47% 1.00        3 rqcred_lock         svc_getreq+0x260
        37   2%  49% 1.00      237 0x300068e83d0       hmestart+0x1c4
        36   2%  50% 1.00        7 0x30000021058       timeout_common+0x4
        36   2%  52% 1.00       35 0x300066fa120       background+0xb0
        32   1%  53% 1.00        9 0x30000024070       timeout_common+0x4
        31   1%  55% 1.00      292 0x300069883d0       hmestart+0x1c4
        29   1%  56% 1.00       36 0x300066fb290       background+0xb0
        28   1%  57% 1.00       11 0x3000001e040       untimeout+0x1c
        25   1%  59% 1.00        9 0x3000001e040       timeout_common+0x4
        22   1%  60% 1.00        2 0x30005161110       sync_stream_buf+0xdc
        21   1%  60% 1.00       29 0x30006834eb8       putq+0xa4
        19   1%  61% 1.00        4 0x3000515dcb0       mdf_alloc+0xc
        18   1%  62% 1.00       45 0x30006834eb8       qenable+0x8
        18   1%  63% 1.00        6 service_queue       queuerun+0x168
        17   1%  64% 1.00       26 0x30005418ee8       vmem_free+0x3c
     [...]

     R/W reader blocked by writer: 76 events in 5.055 seconds (15 events/sec)

     Count indv cuml rcnt     nsec Lock                Caller
     ------------------------------------------------------------------------
        23  30%  30% 1.00 22590137 0x300098ba358       ufs_dirlook+0xd0
        17  22%  53% 1.00  5820995 0x3000ad815e8       find_bp+0x10
        13  17%  70% 1.00  2639918 0x300098ba360       ufs_iget+0x198
         4   5%  75% 1.00  3193015 0x300098ba360       ufs_getattr+0x54
         3   4%  79% 1.00  7953418 0x3000ad817c0       find_bp+0x10
         3   4%  83% 1.00   935211 0x3000ad815e8       find_read_lof+0x14
         2   3%  86% 1.00 16357310 0x300073a4720       find_bp+0x10
         2   3%  88% 1.00  2072433 0x300073a4720       find_read_lof+0x14
         2   3%  91% 1.00  1606153 0x300073a4370       find_bp+0x10
         1   1%  92% 1.00  2656909 0x300107e7400       ufs_iget+0x198
     [...]

     Example 2: Measuring Hold Times

     example# lockstat -H -D 10 sleep 1
     Adaptive mutex spin: 513 events

     Count indv cuml rcnt     nsec Lock                Caller
     -------------------------------------------------------------------------
       480   5%   5% 1.00     1136 0x300007718e8       putnext+0x40
       286   3%   9% 1.00      666 0x3000077b430       getf+0xd8
       271   3%  12% 1.00      537 0x3000077b430       msgio32+0x2fc
       270   3%  15% 1.00     3670 0x300007718e8       strgetmsg+0x3d4
       270   3%  18% 1.00     1016 0x300007c38b0       getq_noenab+0x200
       264   3%  20% 1.00     1649 0x300007718e8       strgetmsg+0xa70
       216   2%  23% 1.00     6251 tcp_mi_lock         tcp_snmp_get+0xfc
       206   2%  25% 1.00      602 thread_free_lock    clock+0x250
       138   2%  27% 1.00      485 0x300007c3998       putnext+0xb8
       138   2%  28% 1.00     3706 0x300007718e8       strrput+0x5b8
     -------------------------------------------------------------------------
     [...]


     Example 3: Measuring Hold Times for Stack Traces  Containing
     a Specific Function

     example# lockstat -H -f tcp_rput_data -s 50 -D 10 sleep 1
     Adaptive mutex spin: 11 events in 1.023 seconds (11
     events/sec)

     -------------------------------------------------------------------------
     Count indv cuml rcnt     nsec Lock                   Caller
         9  82%  82% 1.00     2540 0x30000031380          tcp_rput_data+0x2b90

           nsec ------ Time Distribution ------ count     Stack
            256 |@@@@@@@@@@@@@@@@               5         tcp_rput_data+0x2b90
            512 |@@@@@@                         2         putnext+0x78
           1024 |@@@                            1         ip_rput+0xec4
           2048 |                               0         _c_putnext+0x148
           4096 |                               0         hmeread+0x31c
           8192 |                               0         hmeintr+0x36c
          16384 |@@@                            1
     sbus_intr_wrapper+0x30
     -------------------------------------------------------------------------
     Count indv cuml rcnt     nsec Lock                   Caller
         1   9%  91% 1.00     1036 0x30000055380          freemsg+0x44

           nsec ------ Time Distribution ------ count     Stack
           1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1         freemsg+0x44
                                                          tcp_rput_data+0x2fd0
                                                          putnext+0x78
                                                          ip_rput+0xec4
                                                          _c_putnext+0x148
                                                          hmeread+0x31c
                                                          hmeintr+0x36c

     sbus_intr_wrapper+0x30
     -------------------------------------------------------------------------
     [...]

     Example 4: Basic Kernel Profiling

     For basic profiling, we don't  care  whether  the  profiling
     interrupt  sampled  foo()+0x4c  or  foo()+0x78; we care only
     that it sampled somewhere in foo(), so we use  -k.  The  CPU
     and  PIL  aren't  relevant to basic profiling because we are
     measuring the system as a whole, not  a  particular  CPU  or
     interrupt level, so we use -W.

     example# lockstat -kIW -D 20 ./polltest
     Profiling interrupt: 82 events in 0.424 seconds (194
     events/sec)

     Count indv cuml rcnt     nsec Hottest CPU+PIL     Caller
     -----------------------------------------------------------------------
         8  10%  10% 1.00      698 cpu[1]              utl0
         6   7%  17% 1.00      299 cpu[0]              read
         5   6%  23% 1.00      124 cpu[1]              getf
         4   5%  28% 1.00      327 cpu[0]              fifo_read
         4   5%  33% 1.00      112 cpu[1]              poll
         4   5%  38% 1.00      212 cpu[1]              uiomove
         4   5%  43% 1.00      361 cpu[1]              mutex_tryenter
         3   4%  46% 1.00      682 cpu[0]              write
         3   4%  50% 1.00       89 cpu[0]              pcache_poll
         3   4%  54% 1.00      118 cpu[1]              set_active_fd
         3   4%  57% 1.00      105 cpu[0]              syscall_trap32
         3   4%  61% 1.00      640 cpu[1]              (usermode)
         2   2%  63% 1.00      127 cpu[1]              fifo_poll
         2   2%  66% 1.00      300 cpu[1]              fifo_write
         2   2%  68% 1.00      669 cpu[0]              releasef
         2   2%  71% 1.00      112 cpu[1]              bt_getlowbit
         2   2%  73% 1.00      247 cpu[1]              splx
         2   2%  76% 1.00      503 cpu[0]              mutex_enter
         2   2%  78% 1.00      467 cpu[0]+10           disp_lock_enter
         2   2%  80% 1.00      139 cpu[1]              default_copyin
     -----------------------------------------------------------------------

     Example 5: Generated-load Profiling

     In the example above, 5% of the samples were in poll(). This
     tells  us  how much time was spent inside poll() itself, but
     tells us nothing  about  how  much  work  was  generated  by
     poll();  that is, how much time we spent in functions called
     by poll(). To determine that, we  use  the  -g  option.  The
     example below shows that although polltest spends only 5% of
     its time in poll() itself, poll()-induced work accounts  for
     34% of the load.

     Note that the functions that generate the  profiling  inter-
     rupt  (lockstat_intr(),  cyclic_fire(), and so forth) appear
     in every stack trace, and therefore are considered  to  have
     generated  100%  of  the load. This illustrates an important
     point: the generated load percentages do not add up to  100%
     because they are not independent. If 72% of all stack traces
     contain both foo() and bar(), then both foo() and bar()  are
     72% load generators.

     example# lockstat -kgIW -D 20 ./polltest
     Profiling interrupt: 80 events in 0.412 seconds (194 events/sec)

     Count genr cuml rcnt     nsec Hottest CPU+PIL     Caller
     -------------------------------------------------------------------------
        80 100% ---- 1.00      310 cpu[1]              lockstat_intr
        80 100% ---- 1.00      310 cpu[1]              cyclic_fire
        80 100% ---- 1.00      310 cpu[1]              cbe_level14
        80 100% ---- 1.00      310 cpu[1]              current_thread
        27  34% ---- 1.00      176 cpu[1]              poll
        20  25% ---- 1.00      221 cpu[0]              write
        19  24% ---- 1.00      249 cpu[1]              read
        17  21% ---- 1.00      232 cpu[0]              write32
        17  21% ---- 1.00      207 cpu[1]              pcache_poll
        14  18% ---- 1.00      319 cpu[0]              fifo_write
        13  16% ---- 1.00      214 cpu[1]              read32
        10  12% ---- 1.00      208 cpu[1]              fifo_read
        10  12% ---- 1.00      787 cpu[1]              utl0
         9  11% ---- 1.00      178 cpu[0]              pcacheset_resolve
         9  11% ---- 1.00      262 cpu[0]              uiomove
         7   9% ---- 1.00      506 cpu[1]              (usermode)
         5   6% ---- 1.00      195 cpu[1]              fifo_poll
         5   6% ---- 1.00      136 cpu[1]              syscall_trap32
         4   5% ---- 1.00      139 cpu[0]              releasef
         3   4% ---- 1.00      277 cpu[1]              polllock
     -------------------------------------------------------------------------

     ...

     Example 6: Gathering Lock Contention and Profiling Data  for
     a Specific Module

     In this example we use the -f option not to specify a single
     function, but rather to specify the entire text space of the
     sbus module. We gather both lock  contention  and  profiling
     statistics so that contention can be correlated with overall
     load on the module.

     example# modinfo | grep sbus
      24 102a8b6f   b8b4  59   1  sbus (SBus (sysio) nexus driver)

     example# lockstat -kICE -f 0x102a8b6f,0xb8b4 sleep 10
     Adaptive mutex spin: 39 events in 10.042 seconds (4 events/sec)

     Count indv cuml rcnt     spin Lock               Caller
     -------------------------------------------------------------------------
        15  38%  38% 1.00        2 0x30005160528      sync_stream_buf
         7  18%  56% 1.00        1 0x30005160d18      sync_stream_buf
         6  15%  72% 1.00        2 0x300060c3118      sync_stream_buf
         5  13%  85% 1.00        2 0x300060c3510      sync_stream_buf
         2   5%  90% 1.00        2 0x300060c2d20      sync_stream_buf
         2   5%  95% 1.00        2 0x30005161cf8      sync_stream_buf
         1   3%  97% 1.00        2 0x30005161110      sync_stream_buf
         1   3% 100% 1.00        2 0x30005160130      sync_stream_buf
     -------------------------------------------------------------------------

     Adaptive mutex block: 9 events in 10.042 seconds (1 events/sec)

     Count indv cuml rcnt     nsec Lock               Caller
     -------------------------------------------------------------------------
         4  44%  44% 1.00   156539 0x30005160528      sync_stream_buf
         2  22%  67% 1.00   763516 0x30005160d18      sync_stream_buf
         1  11%  78% 1.00   462130 0x300060c3510      sync_stream_buf
         1  11%  89% 1.00   288749 0x30005161110      sync_stream_buf
         1  11% 100% 1.00  1015374 0x30005160130      sync_stream_buf
     -------------------------------------------------------------------------

     Profiling interrupt: 229 events in 10.042 seconds (23 events/sec)

     Count indv cuml rcnt     nsec Hottest CPU+PIL    Caller

     -------------------------------------------------------------------------
        89  39%  39% 1.00      426 cpu[0]+6           sync_stream_buf
        64  28%  67% 1.00      398 cpu[0]+6           sbus_intr_wrapper
        23  10%  77% 1.00      324 cpu[0]+6           iommu_dvma_kaddr_load
        21   9%  86% 1.00      512 cpu[0]+6           iommu_tlb_flush
        14   6%  92% 1.00      342 cpu[0]+6           iommu_dvma_unload
        13   6%  98% 1.00      306 cpu[1]             iommu_dvma_sync
         5   2% 100% 1.00      389 cpu[1]             iommu_dma_bindhdl
     -------------------------------------------------------------------------

     Example 7: Determining the Average PIL (processor  interrupt
     level) for a CPU

     example# lockstat -Iw -l cpu[3] ./testprog

     Profiling interrupt: 14791 events in 152.463 seconds (97 events/sec)

     Count indv cuml rcnt     nsec CPU+PIL             Hottest Caller

     -----------------------------------------------------------------------
     13641  92%  92% 1.00      253 cpu[3]              (usermode)
       579   4%  96% 1.00      325 cpu[3]+6            ip_ocsum+0xe8
       375   3%  99% 1.00      411 cpu[3]+10           splx
       154   1% 100% 1.00      527 cpu[3]+4            fas_intr_svc+0x80
        41   0% 100% 1.00      293 cpu[3]+13           send_mondo+0x18
         1   0% 100% 1.00      266 cpu[3]+12           zsa_rxint+0x400
     -----------------------------------------------------------------------


ATTRIBUTES
     See attributes(5) for descriptions of the  following  attri-
     butes:

     ____________________________________________________________
    |       ATTRIBUTE TYPE        |       ATTRIBUTE VALUE       |
    |_____________________________|_____________________________|
    | Availability                | SUNWdtrc                    |
    |_____________________________|_____________________________|


SEE ALSO
     dtrace(1M),    attributes(5),    lockstat(7D),    mutex(9F),
     rwlock(9F)

     Solaris Dynamic Tracing Guide

NOTES
     The profiling support provided by lockstat -I  replaces  the
     old (and undocumented) /usr/bin/kgmon and /dev/profile.

     Tail-call elimination can affect call sites. For example, if
     foo()+0x50 calls bar() and the last thing bar() does is call
     mutex_exit(), the compiler can arrange for bar()  to  branch
     to  mutex_exit()with  a  return address of foo()+0x58. Thus,
     the mutex_exit() in bar() will appear as though it  occurred
     at foo()+0x58.

     The PC in the stack frame in which an interrupt  occurs  can
     be  bogus  because,  between function calls, the compiler is
     free to use the return address register for local storage.

     When using the -I and -s options together,  the  interrupted
     PC  will  usually not appear anywhere in the stack since the
     interrupt handler is entered asynchronously, not by a  func-
     tion call from that PC.

     The lockstat technology is provided on an as-is  basis.  The
     format  and  content  of lockstat output reflect the current
     Solaris kernel implementation and are therefore  subject  to
     change in future releases.